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The Reynolds-Averaged Navier-Stokes Equations: A
detailed derivation

Patrizia Favaron

Abstract—The subject of Reynolds-Averaged Navier-Stokes
Equations is treated on many books dealing with micro-
meteorology and related subjects. Often tersely, after space
demands. In this work, aimed at junior undergraduate audience,
the author presents an as full as possible derivation of RANS
equations while minimally resorting to assumptions.

I. INTRODUCTION

This work presents one derivation, of the many possible,
of Reynolds-Averaged Navier-Stokes equations (RANS). This
is not new material, by any way. But in my perception this
widely treated subject is in ways addressed to professional
scientists rather than undergraduate level (I’m thinking to my
cubs-of-engineer in particular).

The common literature presentation of RANS assumes
readers to fill-in the passages as an exercise, and this approach
has surely some value for future physicists and mathemati-
cians. But it might be something too much for people who
hsn’t a vested interest or a passion on the subject of micro-
meteorology.

This, the original motivation.
Then working the passages myself (waiting nothing special)

I realized something deeper was lurking there. As a friend of
mine (a physicist) loves to say, the Devil hides among details,
and I’m beginning to suspect he’s right. What’s sure some
of these details are more “interesting”, than I have expected.
Sometimes in themselves. Other times in a somewhat more
surprising way.

Surely the RANS look very mathematical, and in this they
are similar to many other formulae we can encounter on
a physics book. Working them out, you realize you could
not derive them from the original Navier-Stokes equations
only mathematically. Some of the passages, spotted here and
there, are intrinsically physical. They entail some form of
simplification, of human assumptions about the reality around
us (quite literally in case of our Planetary Boundary Layer -
PBL for friends).

And this in turn clarifies one thing: as a simplification of
reality, the RANS are (“just”?) a model. A mathematical one,
valid if precise conditions are fulfilled.

It also makes us add a tiny bread to the question “Why
is the World so mathematical?”, so common among my
physicist friends. When an (almost) little girl I’ve always
been quite suspicious of it. As a (sort of - more on later -
“mathematician”) I took for granted mathematics is a sort
of distillate of neural connections and structures forged by
mutation and natural selection eons ago, much before the
human kind emerged as something visible. Mathematics is
effective as a description of reality because the underlying

neural structures also are (we wouldn’t be here to write or
read otherwise). That sort of awareness was also central in
my own personal epistemology: Nature is a large collection
of subjects we could interact with, and who can tell stories;
our understanding is greatly improved, if we use some lingua
franca, and maths surely is a good canididate.

I told “sort of mathematician”, and I confirm. Around late
Jurassic I got a degree in applied maths. But before of that
I enjoyed a voluntary internship in ecosystems ecology (at
the University of Milan - my supervisors were very kind
accepting and welcoming me when still ih high school after
my sciences professor’s presentation letter: I was really a
little girl, passionate of Nature and much more interested
in mountain hikes and bycicle rides than in the nerdlike
stuff like, among them, studying: surely something quite far
from the type of the genius). After my degree I worked as
an ersatz-engineer and, later even, sort-of physicist of the
lower atmosphere after my employer discovered (!?) I was a
woman after all and induced me to find another job somewhere
else (they considered directing a programmable-systems-for-
safety-critical-applications testing group a for-men-only job -
pfui, amateurs). So I can happily say I’m an ersatz of an
ersatz-something, and as one of my professors convincingly
explained this is more than sufficient to qualify me as not a
Real Mathematician (Real Mathematicians, in his view, do not
eat, breath, drink, have sex, contemplate flowers, etc, etc: they
only do Mathematics, and are perfectly satisfied of that). (For
completeness, I’ve to admit I’m proud of this non-definition.
)

This long boring self-introduction is my way of saying
read this all at your own risk. You should do better if you
assume all I write is to be taken with pliers. OK, I wrote some
peer-reviewed papers (recently under my name after I got the
courage to, and time ago under a (sort of!) more authoritatively
looking art pseudonym), but what I really am is semi-skilled
worker in the field of measurement and control systems mostly
for the physics of lower atmosphere.

(My passion for Nature and (to my high school maths
teacher dismal) personal epistemology have remained un-
changed.)

Before we proceed, and to the benefit of people unac-
customed to it, let me informally introduce the Einstein
index notation: following people who preceded me I’ll use
it extensively., and so, better to be prepared. It’s not difficult,
and a real lifesaver for a lazy person once you get accustomed
to it. It has to do with indices in expressions. Let’s make some
practical example.

Suppose we’re dealing with the wind vector (we’ll do soon
extensively). We could write it as v = [vx, vy, vz] if we
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choose an appropriate reference system. Or, in my new micro-
meteorologists community, v = [u, v, w]. But nothing prevents
we introduce an index and write v = [u1, u2, u3] instead.
Or even, just ui, with the tacit assumption i = 1, 2, 3. In
the expression ui the index is not repeated, and according
to Einstein’s convention this means it should be expanded in
individual components 1, 2 and 3.

I’ve shown one index, but nothing prevents to use two or
more. In case of two non-repeating indices, an expression
like αij represents a 3-by-3 matrix: no repetitions equals
expansion, that is α11, α12, . . . , α22, α23, . . . , α33.

Now, let’s repeat an index, for example αjj . This time, the
meaning is summation: α11+α22+α33. Or, if you prefer the
way we (sort-of) mathematicians love using,

∑3
j=1 αjj .

I could have also written αii, and the meaning would
have been the same under Einstein’s convention: the sum
α11 + α22 + α33. But I will not: as micro-meteorologists
do, I’ll consistently reserve i for the non-repeated index (the
“equation number”) and j for the repeated. We’ll soon meet
some creative and tricky use of Einstein’s notation, in addition
to the inoffensive: I’ll explain them in all cases.

This said, we can really begin.

II. THE NAVIER-STOKES EQUATIONS IN THEIR MOST
USUAL FORM

In boundary layer meteorology airflow is represented by
the instantaneous, Cartesian-reference Navier-Stokes equations
written using Einstein’s index conventions:

∂ui

∂t
+ uj

∂ui

∂xj
= −δi3g + fcεij3uj −

1

ρ

∂p

∂xi
+ νj

∂2ui

∂x2
j

(1)

where ui is the i-th component of wind speed (u1 = u,u2 =
v,u3 = w), t the time, xi the i-th coordinate (x1 = x,x2 =
y,x3 = z), δij the Kronecker symbol (δij = 0 if i ̸= j, = 1 if
i = j), g the gravity acceleration, fc = 2ω sinϕ the Coriolis
parameter, ω the Earth revolution speed, ϕ the latitude, ρ the
air pressure, εijk the three-indices Levi-Civita symbol (more
on in a following section) and νj the diffusivity coefficient
along the i-th axis (with the additional assumption ν1 = ν2 =
ν3.

III. SOLUTIONS TO NAVIER-STOKES EQUATIONS

In principle, given appropriate (and infinitely detailed) ini-
tial and boundary conditions, equations (1) could be solved
yielding an instantaneous wind field

ui = ui(x, y, z, t) (2)

On paper, all rights, if not for the little detail that finding
it is one of the renown Millennium Prize Problems (in the
same league of telling whether P = NP . and other similar
headaches; incidentally, would you find it, please tell me in
advance so we can share the one million dollar). (In the real
World we content ourselves with numerical approximations:
they demand a lot of computing work, but are satisfactory
enough for applications - and computers are not prone to
complaining of

There is an issue, however: solutions to Navier-Stokes
equations are maybe too rich, as they contain the (interest-
ing) overall en-masse airflow along with other parts usually
considered less attracting like for example turbulent eddies.

IV. ISOLATING THE EN-MASSE FLOW

In order to isolate the en-masse airflow, it is advisable to
define what is not an en-masse flow. In an ideal World this
could be made on purely physical, phenomenological grounds,
by decomposing the airflow in its components, each coming
from one specific and objectively discernible phenomenon, like
turbulent eddies I’ve mentioned in the previous section.

A problem with this approach is that to date the full list of
physical phenomena occurring in air under natural conditions
is still incomplete. We know of turbulent eddies, and also
coherent structures and meandering (with no attempt from my
side to order them in some rational ranking).

So, given the impossibility for the moment to establish a full
theory of natural airflow we have to resort to some empirical
definition. The one in current use is unfortunately rooted in
mathematics, not physics, and takes the form of an operational
definition: the “anything but en-masse flow” is characterized
by a “zero mean”. To date we have nothing better.

In more precise terms, given any quantity we could imagine
to measure in the airflow (a velocity component, or tempera-
ture, or the concentration of some gas, or whatever), and let
it be s, can be decomposed in the sum of a mean part, s, and
a fluctuation s′, the latter having zero mean, that is, s′ = 0.

Of course, s = s(t) is a function (also) of time, and the
same is of s = s(t) and s′ = s′(t).

This approach is known under the name Reynolds decom-
position, as the first quantitative description of turbulence was
devised in the 19th century by the English physicist Osborne
Reynolds. The idea was not new when professor Reynolds
gave it a precise form, however, and its beginning can be traced
to Leonardo da Vinci who in his Codex Atlanticus drafted
clearly the concept, introducing the word turbulence for the
first time incidentally.

Would we identify one way to give mathematical substance
to the Reynolds decomposition, then we could apply it to the
Navier-Stokes equations, so obtaining an averaged form of
them accounting only for the en-masse flow.

V. REYNOLDS MEAN

When Osborne Reynolds first established his decomposition
relation he intended the “mean” as something quite precisely
defined: an ensemble average. This can be formulated in the
conceptual frame of a laboratory experiment in which many
replicas

si = si(t) (3)

are collected (i = 1, . . . , n). Then their average is constructed
as

s =
1

n

n∑
i=1

si(t) (4)
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and the fluctuations associated to each replica can then be
constructed by difference:

s′i = si − s (5)

From this construction it is clear that

s′i = 0 (6)

Property (6) is not the only one: from the definition of
ensemble average we could also get other immediate properties
(r, s are two signals, α, β two real numbers):

αr + βs = αr + βs (7)

rs = rs = r · s (8)

Properties (6), (7) and (8) are immediate consequences of
the definition of ensemble average, but may also be assumed
as a requirement list for any “mean”. They are useful: their
presence allows manipulating instantaneous equations to ob-
tain their averaged counterparts - we’ll see this soon.

Before to proceed, however, it is worth observing the deci-
sion of using properties (6), (7) and (8) as a (partial) definition
of “mean” is quite delicate mathematically. Its original framing
is that of a lab experiment executed with many replicas. But
in Nature we can’t set initial and boundary conditions for an
“experiment”: there is no laboratory!

We still can do something, but in order to we have to make
some assumptions. First of all, we can say s is a realization
(possibly the only one available) of an underlying random
process S. Among users the common assumption is made
S is ergodic: in this case average over “replicas” (multiple
realizations) can be replaced by time averages.

Many concrete definitions of “time averages” can be in-
troduced. One (widely used) example is the “block average”,
defined in a later section. Properties (6), (7) and (8) can then be
used to weed out “means” which are not acceptable, at least
formally. One such case is the so-called “McMillen mean”,
defined on a discrete signal s = {si}ni=1 by the AR(1) relation

s1 = s1 sk = βsk + (1− β)sk−1 (9)

We’ll say about that later.

VI. AXIOMS FOR “MEANS”, TENTATIVE DEFINITION

It is anyway worth observing relations (6), (7) and (8),
known in the community as “Reynolds postulates”, do not
form a complete system of axioms. The author impression,
however, is we got close to it.

As a first attempt to establish a family of axioms for means,
it is first useful to delimit a sort of natural environment for
them. A first element of it is a domain of acceptable signals -
and here physics reappears somewhat. A signal is a function
s : R 7→ R subject to the following conditions:

1) |s(t)| < ∞.
2) s(t) is continuously differentiable up to some h > 0.

Both conditions are physical in their essence. The first states
changes occur within a finite band, and then the energy

involved (whatever its form) is also finite. The second tells that
whatever steep and apparently unpredictable these changes are,
they will never involve discontinuities, cusps, or other cases
in which the derivative does not exist.

As the definition of signal is stated, its domain of definition
coincides with R (we can identify it with time). But no gener-
ality is lost if we assume s : Rm 7→ R with any positive integer
m. And indeed, in sake of physical interpretation a value of
m = 4 may be taken for granted (one dimension represents
“time”, and the other three the “spatial” dimensions).

Condition 1 may in this case be maintained as is. Condition
2 can be reformulated by stating ∂ks

∂αk1∂αk2 ···∂αkm
exists con-

tinuous for any positive integer k ≤ h (k1+k2+· · ·+km = k).
Then we set S as the set of all signals satisfying conditions

1 and 2, equipped with the operations of sum of two signals

(r + s) = (r + s)(t) = r(t) + s(t) (10)

the product of two signals

(rs) = (rs)(t) = r(t)s(t) (11)

and the product of a signal by a scalar

(αs)(t) = αs(t) (12)

With these positions, it is clear S is (also) a vector space.
We now consider a functional ϕ on S as a generic mapping
from S to S that is an operator associating a signal to a signal.

We say the functional ϕ is involutory if

ϕ(ϕ(s)) = ϕ(s) (13)

whenever s ∈ S. A projector of S on a subspace T of S is a
functional ϕ for which ϕ(S) ⊆ T.

A functional ϕ is linear if

ϕ(αr + βs) = αϕ(r) + βϕ(s) (14)

A functional ϕ is multiplicative if

ϕ(rϕ(s)) = ϕ(ϕ(r)s) = ϕ(r)ϕ(s) (15)

A generalized mean over S (or just mean for short) is an
involutory linear multiplicative functional on S. A (general-
ized) mean is often indicated as s using an overline instead
of the functional notation ϕ(s), but this by no means should
be considered mandatory. In fact these two notations will be
interchanged as convenience suggests.

VII. RESIDUALS

The residual of signal s associated to a functional ϕ is the
functional

ρ(s) = s− ϕ(s) (16)

For historical reasons, the residual of a generalized mean is
named fluctuation, and we write

s′ = s− s (17)
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If a functional ϕ is linear, then its residual also is. To see
this, let us consider ρ(αr + βs). According to the definition
we have

ρ(αr + βs) = αr + βs− ϕ(αr + βs) (18)

By the linearity of ϕ the right member of (18) can be written
as

αr+βs−αϕ(r)+βϕ(s) = α [r − ϕ(r)]+β [s− ϕ(s)] (19)

that is, αρ(r) + βρ(s) as desired.
What happens to the residual, if its functional is multiplica-

tive? Let’s consider

ρ(ϕ(rϕ(s))) = ϕ(rϕ(s))− ϕ(ϕ(rϕ(s))) (20)

The right member’s leftmost term can be written as ϕ(r)ϕ(s)
by multiplicativity. And the rightmost? It is ϕ(ϕ(r)ϕ(s)). So,
we can say

ρ(ϕ(rϕ(s))) = ϕ(r)ϕ(s)− ϕ(ϕ(r)ϕ(s)) (21)

that is, ρ(ϕ(rϕ(s))) = ρ(ϕ(r)ϕ(s)). With almost identical
steps we can say ρ(ϕ(ϕ(r)s)) = ρ(ϕ(r)ϕ(s)), and we see
ρ is also multiplicative.

At this point it would be tempting to imagine the residual
of an involutory functional is also involutory. And in a sense
it is, but in a much stronger sense. In this case we would get

ρ(ϕ(s)) = ϕ(s)− ϕ(ϕ(s)) = ϕ(s)− ϕ(s) = 0 (22)

This is quite an important result: if a functional is involutory
its residual is zero. Can we say the reverse is true? That is, if
the residual is zero then the associated operator is involutory?
The answer is in general negative. All we could say is:

ρ(s) = s− ϕ(s) = 0 (23)

or

s = ϕ(s) (24)

But this is a property of the signal, not the operator. Formula
(24) can in fact be seen as a functional equation. Its solutions
(which need neither to exist nor be unique) is a fixed point
of functional ϕ. Quite an unusual “point” indeed, as it is an
entire signal, but names remain often attached for historical
reason regardless their possibly misleading value...

We could say more would ϕ be linear in addition to
involutory: in this case,

ϕ(ρ(s)) = ϕ(s−ϕ(s)) = ϕ(s)−ϕ(ϕ(s)) = ρ(ϕ(s)) = 0 (25)

This is quite interesting. The fact of being linear and
involutory is all what we need to say the functional of the
residual being zero, a result identical to (6). The fact of being
multiplicative plays no special role in this case.

On the positive side we can say this proves our “axioms”
of generalized means are equivalent to Reynolds postulates (6)
to (8).

In section V the promise was made to show the AR(1) filter
(9) is not a mean. Now we can see: the AR(1) filter is not
involutory, and this is enough to exclude it from the set of
generalized means.

VIII. DERIVATIVES AS FUNCTIONALS

In section VI the requirement of being differentiable with
continuity was made for signals, up to some appropriately
“high” order k. We can change our perspective now, and
consider time or directional derivatives as special cases of
functionals. Indeed they are, being able to associate an element
of S to another element of S.

Differentiation rules allow us to say something more. In
view of this objective we may use generic first order partial
derivatives, which will be indicated as ∂

∂a regardless what a
actually designates, time or a spatial direction. From calculus
we know

∂

∂a
(αr + βs) = α

∂

∂a
r + β

∂

∂a
s (26)

That’s quite like the discovery of hot water, but partial deriva-
tive is a linear operator.

The partial derivative is not involutory, however:

∂

∂a

(
∂

∂a
s

)
=

∂2

∂a2
s ̸= ∂

∂a
s (27)

Interestingly (and also trivially, if you remember calculus)
the partial differential functional has a fixed point:

∂

∂a
s = s =⇒ s = exp(a) (28)

May we say something about multiplicativity? Let’s see:

∂

∂a

(
r
∂

∂a
s

)
=

∂

∂a
r
∂

∂a
s+ r

∂

∂a

∂

∂a
s =

∂

∂a
r
∂

∂a
s+ r

∂2

∂a2
s

(29)

∂

∂a

((
∂

∂a
r

)
s

)
=

∂

∂a
r
∂

∂a
s+s

∂

∂a

∂

∂a
r =

∂

∂a
r
∂

∂a
s+s

∂2

∂a2
r

(30)
The two expressions differ, and do not coincide with ∂

∂ar
∂
∂as:

the differentiation functional is not multiplicative.
Nothing new, nor unexpected: the differentiation functional

is quite far from a generalized mean, as it should be. More
important to our cases, is whether differentiation is well-
behaved with respect to generalized means.

In particular, it would be interesting to discover the behavior
of differentiation with respect to a functional ϕ. We start by
writing the definition of the differentiation operator:

∂

∂a
s(a) = lim

h→0

s(a+ h · ja)− s(a)

h
(31)

where a = [x, y, z, t] is the position and instant at which the
signal is evaluated and ja its corresponding unit vector. By
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our assumptions the derivative exists. It makes then sense to
wrap it into the functional ϕ, thus obtaining

ϕ

(
∂

∂a
s

)
= ϕ

(
lim
h→0

s(a+ h · ja)− s(a)

h

)
(32)

In line of principle it is not guaranteed ϕ can be moved
inside the limit sign: in addition to the axioms we preliminarily
did set in section VI we also need ϕ to be continuous, in the
sense ϕ(s(a)) is a continuous function of a whatever the signal
s. This is indeed not that difficult to state, as the “means” we
could imagine are continuous in this sense. But then we may
write

ϕ

(
lim
h→0

s(a+ h · ja)− s(a)

h

)
= lim

h→0
ϕ

(
s(a+ h · ja)− s(a)

h

)
(33)

If ϕ is linear we can also say

lim
h→0

ϕ

(
s(a+ h · ja)− s(a)

h

)
= lim

h→0

ϕ (s(a+ h · ja))− ϕ (s(a))

h
(34)

Linearity and continuity then suffice to prove the chain of
equalities

ϕ

(
∂

∂a
s

)
=

∂

∂a
ϕ(s) (35)

which in case of generalized means may be written as

∂

∂a
s =

∂

∂a
s (36)

Relation (36) may be iterated, and so extended to derivatives
from the second on, until the maximum k assumed for signals.

IX. SECTIONING THE NAVIER-STOKES EQUATIONS: THE
TOTAL DERIVATIVE

We are now in the position to express the Reynolds averag-
ing of Navier-Stokes equations. In sake of notational simplicity
it is better to divide the equation (1) in parts, then expand them
from Einstein to standard convention.

The first building block of (1) we’ll consider is the total
derivative of wind,

∂ui

∂t
+ uj

∂ui

∂xj
(37)

which upon averaging becomes

∂ui

∂t
+ uj

∂ui

∂xj
(38)

By linearity, the preceding equations become

∂ui

∂t
+ uj

∂ui

∂xj
(39)

The leftmost term may be expressed directly as

∂ui

∂t
(40)

To express the rightmost we apply directly the Reynolds
decomposition:

(
uj + u′

j

) ∂ (ui + u′
i)

∂xj
(41)

or

uj
∂ui

∂xj
+ uj

∂u′
i

∂xj
+ u′

j

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(42)

By linearity, the preceding formula becomes

uj
∂ui

∂xj
+ uj

∂u′
i

∂xj
+ u′

j

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(43)

Now we use the fact a generalized mean is multiplicative

uj
∂ui

∂xj
+ uj

∂u′
i

∂xj
+ u′

j

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(44)

and involutory:

uj
∂ui

∂xj
+ uj

∂u′
i

∂xj
+ u′

j

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(45)

Now we use formula (36) for derivatives, so obtaining

uj
∂ui

∂xj
+ uj

∂u′
i

∂xj
+ u′

j

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(46)

We then use involutority again:

uj
∂ui

∂xj
+ uj

∂u′
i

∂xj
+ u′

j

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(47)

As we have seen in section VII, involutorily and linearity
imply s′ = 0. Using this property we may finally say

uj
∂ui

∂xj
+ uj

∂0

∂xj
+ 0

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
= uj

∂ui

∂xj
+ u′

j

∂u′
i

∂xj
(48)

The latter formula comes always to me, the author, as a
surprise. It’s unexpected. One would imagine, if intuition is
the only guide, the mean of otal derivative to be just u′

j
∂u′

i

∂xj
.

But no: that’s also that little disturbing term, u′
j
∂u′

i

∂xj
. On a

purely formal side, it’s something survived to the Reynolds
averaging “axioms”. But, what does it mean exactly?

I anticipate the remaining part of the reasoning is grounded
on physics, not math: this departs from the calculus-only
steps we’ve performed until now. And, as often happens,
it adds something interesting and diverse to the discourse.
We have no space or time to get deeper in phylosophical
matters, but as we’ll see within seconds the derivation of
Reynolds Averaged Navier-Stokes equation cannot occur only
by mathematical means. It gives birth to one of the many
physical models having a mathematical form, but it is by
no means “mathematics”. Not strictly. It is something, if you
like, with a beautiful mathematical dress, but with living flesh
inside. Rooted in our World, our reality as it is. One more
reason to not astonish the physical World is so “mathematical”.
Maybe it isn’t, strictly speaking. Maybe, maths is a language.
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Its “poetry” very well fit the real World, but in a sense maybe
a true mathematician would not appreciate.

The first step, by the way, is mathematical. We notice that,
by high-school differentiation-of-a-product rule,

∂u′
iu

′
j

∂xj
= u′

i

∂u′
j

∂xj
+ u′

j

∂u′
i

∂xj
(49)

or, if you prefer,

u′
j

∂u′
i

∂xj
=

∂u′
iu

′
j

∂xj
− u′

i

∂u′
j

∂xj
(50)

If we apply the generalized mean to both terms, we see

u′
j

∂u′
i

∂xj
=

∂u′
iu

′
j

∂xj
− u′

i

∂u′
j

∂xj
(51)

Now we apply linearity, and get the rightmost member as

∂u′
iu

′
j

∂xj
− u′

i

∂u′
j

∂xj
(52)

Now, a mathematical coincidence with an interesting phys-
ical consequence: in u′

i
∂u′

j

∂xj
, the

∂u′
j

∂xj
factor occurs with the in-

dex j repeated: according to Einstein’s convention, its meaning
is really

∂u′
j

∂xj
=

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
(53)

It has a name: in the lingo of vector people it is the divergence
of the fluctuations of airflow. And here comes the physical
factlet: it is the fluctuation part of the divergence of the whole
airflow,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
(54)

which if wind speed is much less than the speed of sound in
still air, is negligible. Its mean also is, together with the mean
of its fluctuation. That given, formula (52) may be rewritten
this way:

∂u′
iu

′
j

∂xj
− u′

i

∂u′
j

∂xj
=

∂u′
iu

′
j

∂xj
− u′

i0 =
∂u′

iu
′
j

∂xj
(55)

In conclusion, we (physically!) proved

u′
j

∂u′
i

∂xj
=

∂u′
iu

′
j

∂xj
(56)

and then, in turn,

∂ui

∂t
+ uj

∂ui

∂xj
=

∂ui

∂t
+

∂u′
iu

′
j

∂xj
(57)

It is now worth noting u′
iu

′
j has a statistical interpretation:

it is the covariance (in generalized terms) of ui and uj .

X. THE GRAVITY TERM

Nothing to say here, this term is constant and remains
unchanged upon application of the generalized mean. The only
tricky thing is notational: the term reads −δi3g, where δij is
the discrete analogous of the Dirac delta, equal to 1 if i = j,
0 otherwise. But i in this case is the equation index: written
as it is, the gravity term is zero on the first two equations of
the three, namely the ones for u and v. In case of the third
equation, for w, the term assumes its value −g.

XI. THE CORIOLIS TERM

The term fcεij3uj in (1) represents the effect of Coriolis
apparent force, and is a direct consequence of having chosen
a reference frame fixed to the Earth surface, notoriously non-
inertial. Of fc we have seen already in section II: to any respect
we can consider it a constant (it depends just on position
through latitude, and we know position is fixed).

Again however we have a bit of Einstein’ sorcery: εijk is
Levi-Civita symbol, equal to 1 if ijk form an even permutation
of 1,2,3; -1 if ijk form an odd permutation; and 0 otherwise.
In our case, we have the symbol particularized to εij3, with
j repeating on uj and then indicating a sum. We expand it,
considering i designates the equation: for i = 1, the only non-
zero value of ε1j3 is found when j = 2, and is +1 (123 form
an even permutation of 1,2,3) so the Coriolis term assumes
the form

+fcu2 (58)

For i = 2 the only non-zero value ε2j3 occurs when j = 1
and is -1 (213 is an odd permutation of 1,2,3). The Coriolis
term takes then the form

−fcu1 (59)

Last, if i = 3 we have ε3j3. The index 3 is repeated,
so whatever the value of j, 3j3 is neither an even nor an
odd permutation: then, ε3j3 = 0. This makes a lot of sense:
Coriolis force has no vertical component.

XII. THE PRESSURE TERM

Term − 1
ρ

∂p
∂xi

in (1) represents the effect of pressure. In Plan-
etary Boundary Layer physics pressure plays a much smaller
role than in, say, synoptic meteorology: on a small spatial
scale pressure changes are typically quite small. Nevertheless,
pressure and air density are subject to fluctuation and their
averaging needs then be performed.

Air density ρ occurs on denominator, and this is a case we
never met, nor some axiom exists regarding it. So we cannot
in general say 1

ρ = 1
ρ . But on the other side we can apply

Taylor expansion and write

1

ρ+ ρ′
=

1

ρ
− ρ′

ρ2
+ · · ·+ (−1)k

(
ρ′

ρ

)k
1

ρ
+ · · · (60)

Taylor series sometimes are good sources of simple and useful
approximations: when luck assists truncated versions of them
may be either used to compute the desired approximand to
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some prescribed accuracy (in this case by fixing in advance an
order to the polynomial representing the truncated series) or to
extend accuracy adding more terms. Examples of well-behaved
Taylor series are expx, sinx and cosx. But unfortunately
vanilla-like behavior cannot be taken for granted, and indeed
it is quite rare: in this respect it helps when the mean around
which variations are taken is large compared to variation
itself: this ensures individual terms decay more quickly to
zero as their order increases, which in turn permits a faster
convergence of approximations. If, in addition, it is guaranteed
the series terms have alternating signs (our case!) then the error
we get by truncating the series has a magnitude smaller than
the first neglected term (another calculus rule, this time from
freshman university year).

In micromteorology books the approximation

1

ρ+ ρ′
≈ 1

ρ
(61)

is commonly made. The author’s proposal is to retain one more
term:

1

ρ+ ρ′
≈ 1

ρ
− ρ′

ρ2
=

1

ρ

(
1− ρ′

ρ

)
(62)

If we agree on this, we may write the pressure term in
approximate form

−
(
1

ρ
− ρ′

ρ2

)
∂ (p+ p′)

∂xi
(63)

then apply linearity of derivatives and a little algebra to get

−1

ρ

∂p

∂xi
− 1

ρ

∂p′

∂xi
+

ρ′

ρ2
∂p

∂xi
+

ρ′

ρ2
∂p′

∂xi
(64)

Now we apply averaging and take its linearity into account:

−1

ρ

∂p

∂xi
− 1

ρ

∂p′

∂xi
+

ρ′

ρ2
∂p

∂xi
+

ρ′

ρ2
∂p′

∂xi
(65)

Now, we can apply multiplicativity. By it, the first term of (65)
becomes

−1

ρ

∂p

∂xi
(66)

What about 1
ρ? Still, from a mathematical standpoint we

should carry the generalized mean oversign inside, but phys-
ically we can observe that in the Planetary Boundary Layer,
adopting SI units, the value of ρ is represented by quite a
large number (about 335 hPa on tip of Mt Everest), subject to
small changes in the hourly-or-less time scale typical of PBL
phenomena. Then we can bona fide assume the ratio 1

ρ is a
generalized mean. Then, by involutorily,

1

ρ
=

1

ρ
=

1

ρ
(67)

The other part of the first term is quite inoffensive: we just
apply the property of mean derivatives,

∂p

∂xi
=

∂p

∂xi
(68)

and then involutority:

∂p

∂xi
=

∂p

∂xi
(69)

so we can write the first term as intuition could suggest:

−1

ρ

∂p

∂xi
(70)

We now apply multiplicativity to second and third terms:

−1

ρ

∂p′

∂xi
+

ρ′

ρ2
∂p

∂xi
= −1

ρ

∂p′

∂xi
+

ρ′

ρ2
∂p

∂xi
(71)

By using the same reasoning as with the first term we could
wed out reciprocals of ρ and stay happy: they will not interfere.
More importantly, we can write

∂p′

∂xi
=

∂p′

∂xi
=

∂0

∂xi
= 0 (72)

and

ρ′

ρ2
=

ρ′

ρ2
=

0

ρ2
= 0 (73)

so we can write

−1

ρ

∂p′

∂xi
+

ρ′

ρ2
∂p

∂xi
= 0 (74)

The fourth term involves a covariance, as we have seen
for momentum in section IX. As in that case we can not
decompose it any further, but by moving the mean density
outside (which involves linearity, multiplicativity and the con-
siderations on ρ already exposed in this section:

ρ′

ρ2
∂p′

∂xi
=

1

ρ2
ρ′
∂p′

∂xi
(75)

All we have done allows to finally write the pressure term
as

−1

ρ

∂p

∂xi
= −1

ρ

∂p

∂xi
+

1

ρ2
ρ′
∂p′

∂xi
(76)

XIII. THE DIFFUSIVE TERM

The last term in Navier-Stokes equations accounts for
diffusion:

νj
∂2ui

∂x2
j

(77)

When averaging it, we may assume the diffusion coefficient
ν = νi to be constant: upon application of linearity and the
formula for averaging derivatives we straightforwardly get

νj
∂2ui

∂x2
j

(78)
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XIV. THE RANS, FINALLY

By assembling the various averaged terms we have written
so far it is possible to see the (Patrizia’ style) RANS:

∂ui

∂t
+
∂u′

iu
′
j

∂xj
= −δi3g+fcεij3uj−

1

ρ

∂p

∂xi
+

1

ρ2
ρ′
∂p′

∂xi
+νj

∂2ui

∂x2
j

(79)
We can also see the “standard” RANS, by just dropping the

covariance from the pressure term:

∂ui

∂t
+

∂u′
iu

′
j

∂xj
= −δi3g + fcεij3uj −

1

ρ

∂p

∂xi
+ νj

∂2ui

∂x2
j

(80)

XV. GOING FURTHER

A cursory examination of the RANS (80) shows they are
formally more intricate than their instantaneous counterparts
(1): they also contain “strange” momentum covariance terms;
this is even more evident with Patrizia’s version, where in
addition to momentum there are also pressure-density covari-
ances.

Would we try solving the RANS numerically, we should
also say something of these covariances: in any regard they
can be seen as additional independent variables. That’s a dire
problem: the original NS are three (nonlinear) equations in
three unknowns, and might in principle be “solved”. Not so
for the RANS, unless of course we either add many more
equations to “close” the system, or we say something about
them.

The approach followed by the scientific community has been
to express the covariances in terms of simpler variables: still
additional, but less in number and less intricate. This approach
is named “closure”, and account of it may be found in any
classical text dealing with micro-meteorology.

I will refrain doing so, however: my objective was quite
didactical in nature, and surely more limited. Dealing also
with closures would just have been a duplication of existing
excellent works: an unneeded waste of bytes, paper and
neurons.

It is however interesting, if you like, to go further. In this
view, and without attempting to endorse any author, I would
suggest the classical book by R. Stull, An Introduction to
Boundary Layer Meteorology, Kluwer Academic Publishing,
1988: quite dated, yet still very useful and, as far as RANS
are involved, actual (besides, professor Stull was one of the
authors active in inventing clever closure relationships). The
book is still available for sale.

For the Italian reader, a quark more recent (and advanced)
alternative is R. Sozzi, T. Georgiadis, M. Valentini, Intro-
duzione alla turbolenza atmosferica - Concetti, stime, misure,
Pitagora Editrice, 2002. As far as the author knows, this title
is not any longer available for sale, but can be easily found in
Italian faculty libraries (I’m one of the lucky people having
their own personal copy, but don’t even try asking it even for
lending: I’ll defent it to life).

Both Stull and Sozzi et al books are very informative about
the formulae, but saying they have an introductory character

would be a positive falsity. To get a grasp of boundary
layer meteorology I’d recommend S. Pal Arya, Introduction
to Micrometeorology, Academic Press, 2001.

Apart from some elementary functional analysis lingo, any-
thing mathematical in this work could not demand more than
high-school and fresh(wo)man level undergraduate material: I
did my best to stay “simple”.

Of course you may have still doubts: as I mentioned at
the very beginning of this work this is a really healthy
attitude. In case, you may find at my e-mail address,
patti.favaron@gmail.com: I cannot promise I’ll answer in real
time, but I’ll do my best to stay in contact. If you write
me, however, please specify the title of this report, just to
understand where your question is coming from.

I wish you peace and prosperity. And maybe, you are even
perceiving my Vulcan salute, mr.Spock style.


